A comprehensive Verilog-A VCSEL model for >20Gb/s optical interconnect transceiver circuit design

نویسندگان

  • Binhao Wang
  • Wayne Sorin
  • Samuel Palermo
  • Michael Tan
چکیده

Directly-modulated vertical-cavity surface-emitting lasers (VCSELs) are commonly used in short-reach optical interconnect applications. In order to enable efficient optical interconnect transceiver systems operating at data rates in excess of 20Gb/s, cosimulation environments which allow for the optimization of driver circuitry with accurate compact VCSEL models are necessary. This paper presents a compact comprehensive Verilog-A VCSEL model which captures thermally-dependent electrical and optical dynamics and provides dc, small signal, and large-signal simulation capabilities. The device’s electrical behavior is described with an equivalent circuit which captures both large-signal operation and electrical parasitics, while the optical response is captured with a rate-equation-based model, with bias and temperature dependencies incorporated into key electrical and optical model parameters. Experimental verification of the model is performed at 25Gb/s with a 990nm VCSEL to study the impact of bias current level and substrate temperature. External Posting Date: February 10, 2016 [Fulltext] Internal Posting Date: February 10, 2016 [Fulltext] Approved for External Publication  Copyright 2016 Hewlett Packard Enterprise Development LP A comprehensive Verilog-A VCSEL model for >20Gb/s optical interconnect transceiver circuit design Binhao Wang,1, 2, * Wayne Sorin,2 Samuel Palermo,1 and Michael Tan2 1Department of Electrical & Computer Engineering, Texas A&M University, College Station, CA 77843, USA 2Hewlett Packard Labs, Hewlett Packard Enterprise, Palo Alto, CA 94304, USA *[email protected] Abstract: Directly-modulated vertical-cavity surface-emitting lasers (VCSELs) are commonly used in short-reach optical interconnect applications. In order to enable efficient optical interconnect transceiver systems operating at data rates in excess of 20Gb/s, co-simulation environments which allow for the optimization of driver circuitry with accurate compact VCSEL models are necessary. This paper presents a compact comprehensive Verilog-A VCSEL model which captures thermally-dependent electrical and optical dynamics and provides dc, small signal, and large-signal simulation capabilities. The device’s electrical behavior is described with an equivalent circuit which captures both largesignal operation and electrical parasitics, while the optical response is captured with a rate-equation-based model, with bias and temperature dependencies incorporated into key electrical and optical model parameters. Experimental verification of the model is performed at 25Gb/s with a 990nm VCSEL to study the impact of bias current level and substrate temperature. 2015 Optical Society of America OCIS codes: (250.7260) Vertical cavity surface emitting lasers; (230.2090) Electro-optical devices; (250.5300) Photonic integrated circuits; (200.4650) Optical interconnects. Directly-modulated vertical-cavity surface-emitting lasers (VCSELs) are commonly used in short-reach optical interconnect applications. In order to enable efficient optical interconnect transceiver systems operating at data rates in excess of 20Gb/s, co-simulation environments which allow for the optimization of driver circuitry with accurate compact VCSEL models are necessary. This paper presents a compact comprehensive Verilog-A VCSEL model which captures thermally-dependent electrical and optical dynamics and provides dc, small signal, and large-signal simulation capabilities. The device’s electrical behavior is described with an equivalent circuit which captures both largesignal operation and electrical parasitics, while the optical response is captured with a rate-equation-based model, with bias and temperature dependencies incorporated into key electrical and optical model parameters. Experimental verification of the model is performed at 25Gb/s with a 990nm VCSEL to study the impact of bias current level and substrate temperature. 2015 Optical Society of America OCIS codes: (250.7260) Vertical cavity surface emitting lasers; (230.2090) Electro-optical devices; (250.5300) Photonic integrated circuits; (200.4650) Optical interconnects. References and links 1. C. Kachris, K. Kanonakis, and I. Tomkos, "Optical interconnection networks in data centers: recent trends and future challenges," IEEE Comm. Mag. 51(9), 39-45 (2013). 2. C. Minkenberg, "HPC networks: challenges and the role of optics," in OSA Optical Fiber Communication Conference, W3D3 (2015). 3. J. Proesel, C. Schow, and A. Rylyakov, "25Gb/s 3.6pJ/b and 15Gb/s 1.37pJ/b VCSEL-based optical links in 90nm CMOS," in IEEE International Solid-State Circuits Conference (2012), pp. 418-420. 4. J.-Y. Jiang, P.-C. Chiang, H.-W. Hung, C.-L. Lin, T. Yoon, and J. Lee, "100Gb/s ethernet chipsets in 65nm CMOS technology," in IEEE International Solid-State Circuits Conference (2013), pp. 120-121. 5. Y. Tsunoda, M. Sugawara, H. Oku, S. Ide, and K. Tanaka, "A 40Gb/s VCSEL over-driving IC with groupdelay-tunable pre-emphasis for optical interconnection," in IEEE International Solid-State Circuits Conference (2014), pp. 154-155. 6. Y. Tsunoda, T. Shibasaki, S. Ide, T. Mori, Y. Koyanagi, K. Tanaka, T. Ishihara, and H. Tamura, "A 24-to35Gb/s ×4 VCSEL driver IC with multi-rate referenceless CDR in 0.13μm SiGe BiCMOS," in IEEE International Solid-State Circuits Conference (2015), pp. 414-415. 7. M. Raj, M. Monge, and A. Emami, "A 20Gb/s 0.77pJ/b VCSEL transmitter with nonlinear equalization in 32nm SOI CMOS," in IEEE Custom Integrated Circuits Conference (2015). 8. D. Kuchta, "High-speed low-power short-reach optical interconnects for high-performance computing and servers," in Proc. SPIE 9010, 901007 (2014). 9. J. Tatum, D. Gazula, L. Graham, J. Guenter, R. Johnson, J. King, C. Kocot, G. Landry, I. Lyubomirsky, A. MacInnes, E. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, and F. Tang, "VCSEL-Based Interconnects for Current and Future Data Centers," J. Lightwave Technol. 33(4), 727-732 (2015). 10. S. Pavan, J. Lavrencik, R. Shubochkin, Y. Sun, J. Kim, D. Vaidya, R. Lingle, T. Kise, and S. Ralph, "50Gbit/s PAM-4 MMF with transmission using 1060nm VCSELs with reach beyond 200m," in OSA Optical Fiber Communication Conference, W1F5 (2014). 11. W. Soenen, R. Vaernewyck, X. Yin, S. Spiga, M. -C. Amann, K. Kaur, P. Bakopoulos, and J. Bauwelinck, "40 Gb/s PAM-4 Transmitter IC for Long-Wavelength VCSEL Links," IEEE Photonics Technol. Lett. 27(4), 344347 (2015). 12. W. A. Ling, I. Lyubomirsky, R. Rodes, H. Daghighian, and C. Kocot, "Single-Channel 50G and 100G Discrete Multitone Transmission With 25G VCSEL Technology," J. Lightwave Technol. 33(4), 761-767 (2015). 13. H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Kicherer, M. C. Riedl, and K. J. Ebeling, "Improving single-mode VCSEL performance by introducing a long monolithic cavity," IEEE Photonics Technol. Lett. 12(8), 939-941 (2000). 14. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, "Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 80(21), 3901-3903 (2002). 15. H. J. Unold, S. W. Z. Mahmoud, R. Jager, M. Golling, M. Kicherer, F. Mederer, M. C. Riedl, T. Knodl, M. Miller, R. Michalzik, and K. J. Ebeling, "Single-mode VCSELs," Proc. SPIE 4649, 218-229 (2002). 16. A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief," IEEE Photonics Technol. Lett. 16(2), 368-370 (2004). 17. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (1995). 18. R. S. Tucker, "Large-signal circuit model for simulation of injection-laser modulation dynamics," IEE Proceedings-I (Solid-State and Electron Devices) 128(5), 180-184 (1981). 19. R. S. Tucker and D. J. Pope, "Microwave circuit models of semiconductor injection-lasers," IEEE Trans. Microwave Theory Tech. 31(3), 289-294 (1983). 20. M. Bruensteiner and G. C. Papen, "Extraction of VCSEL rate-equation parameters for low-bias system simulation," IEEE J. Sel. Topics Quantum Electron. 5(3), 487-494 (1999). 21. G. Sialm, D. Erni, D. Vez, C. Kromer, F. Ellinger, G. L. Bona, T. Morf, and H. Jackel, "Tradeoffs of verticalcavity surface emitting lasers modeling for the development of driver circuits in short distance optical links," Optical Engineering 44(10), 105401 (2005). 22. A. Bacou, A. Hayat, V. Iakovlev, A. Syrbu, A. Rissons, J.-C. Mollier, and E. Kapon, "Electrical modeling of long-wavelength VCSELs for intrinsic parameters extraction," IEEE J. Quantum Electron. 46(3), 313-322 (2010). 23. J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, "Modeling temperature effects and spatial holeburning to optimize vertical-cavity surface-emitting laser performance," IEEE J. Quantum Electron. 29(5), 1295-1308 (1993). 24. P. V. Mena, J. J. Morikuni, S. M. Kang, A. V. Harton, and K. W. Wyatt, "A simple rate-equation-based thermal VCSEL model," J. Lightwave Technol. 17(5), 865-872 (1999). 25. P. V. Mena, J. J. Morikuni, S. M. Kang, A. V. Harton, and K. W. Wyatt, "A comprehensive circuit-level model of vertical-cavity surface-emitting lasers," J. Lightwave Technol. 17(12), 2612-2632 (1999). 26. J. S. Gustavsson, J. A. Vukusic, J. Bengtsson, and A. Larsson, "A comprehensive model for the modal dynamics of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 38(2), 203-212 (2002). 27. A. Gholami, Z. Toffano, A. Destrez, S. Pellevrault, M. Pez, and F. Quentel, "Optimization of VCSEL spatiotemporal operation -in MMF links for 10-Gb ethernet," IEEE J. Sel. Topics Quantum Electron. 12(4), 767-775 (2006). 28. K. Minoglou, E. D. Kyriakis-Bitzaros, D. Syvridis, and G. Halkias, "A compact nonlinear equivalent circuit model and parameter extraction method for packaged high-speed VCSELs," J. Lightwave Technol. 22(12), 2823-2827 (2004). 29. P. Westbergh, J. S. Gustavsson, A. Haglund, M. Skoeld, A. Joel, and A. Larsson, "High-Speed, Low-CurrentDensity 850 nm VCSELs," IEEE J. Sel. Topics Quantum Electron. 15(3), 694-703 (2009).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical hybrid package with an 8-channel 18GT/s CMOS transceiver for chip-to-chip optical interconnect

We describe the design and development of a high-speed 8-channel hybrid integrated optical transceiver package with Clock and Data Recovery (CDR) circuits. The package concept has been developed to be compatible with microprocessor package technology and at the same time allow the integration of low cost, high-performance optical components. A 90nm CMOS optical transceiver chip, 850nm 10Gb/s Ga...

متن کامل

Biwavelength transceiver module for parallel simultaneous bidirectional optical interconnections

The design of a biwavelength transceiver (TRx) module for parallel simultaneous bidirectional optical interconnects is described. The TRx module has been implemented using two different wavelengths, 850 and 1060 nm, to send and receive signals simultaneously through a common optical interface while optimizing cost and performance. Filtering mirrors are formed in the optical fibers which are emb...

متن کامل

Vertical-Cavity Surface-Emitting Lasers: Large Signal Dynamics and Silicon Photonics Integration

The GaAs-based vertical-cavity surface-emitting laser (VCSEL) is the standard light source in today’s optical interconnects, due to its energy efficiency, low cost, and high speed already at low drive currents. The latest commercial VCSELs operate at data rates of up to 28Gb/s, but it is expected that higher speeds will be required in the near future. One important parameter for the speed is th...

متن کامل

CMOS Circuits for VCSEL - Based Optical

Electrical IO is becoming limited by copper interconnect channel losses that depend on frequency and distance. Package-to-package optical interconnects see negligible frequency-dependent channel losses, but data rates are limited by the intrinsic optical dynamics and electrical parasitics of the optical devices. This thesis presents 90nm CMOS front-end circuits which apply techniques to operate...

متن کامل

Verilog-a Implementation of a 2d Spatiotemporal Vcsel Model for System-oriented Simulations of Optical Links

An implementation of a highly efficient spatiotemporal vertical-cavity surface-emitting laser (VCSEL) model in the circuit simulation environment of Cadence is presented. The VCSEL model, based on a set of modified rate equations, is written in Verilog-A. It enables the association of the VCSEL model with transistor-level models of the driver and detector circuits. Furthermore, the spatiotempor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016